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Abstract 
The construction industry is often affected by 

unanticipated struck-by accidents, which often cause 
severe injuries and fatalities to the workers. 
Therefore, monitoring and tracking struck-by 
hazards in terms of the spatial relationship between a 
worker and a heavy vehicle is crucial to prevent such 
accidents. Current studies focus on using active 
sensors and implementing computer vision but not on 
the audibility of their safety signals. To address this 
issue, this paper utilizes sound, a ubiquitous data 
source present in every construction site, to track and 
separate equipment sound into different types and 
determine the direction of arrival (DOA) using the 
Open embeddeD Audition System (ODAS) 
framework. Each circular array performs DOA 
estimation independently using commercial software 
on two equipment sound sources, bulldozer (mobile) 
sound and hammer (stationary) sound. The DOAs are 
fed to a relational database, pre-processed, and used 
to perform the source tracking. This process provides 
a step towards monitoring the spatial relationship 
between workers and equipment with few labels of 
source location for calibration. The results of our 
study showed that this method was effective in 
identifying activities of multiple pieces of equipment 
in real-time in construction sites without the need for 
separating sound signals in advance. Future studies 
can focus on triangulating the exact location of the 
sound source with less computation power and 
monitoring how this helps improve workers’ 
awareness of surrounding equipment. 
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1 Introduction 
For a long time, researchers have considered struck-by 

heavy vehicle accidents as one of the leading causes of 
death in the labor-intensive construction industry [1]. 
This is mostly due to the unpredictable nature of 
construction equipment and limited workspaces resulting 
in lifelong impairment, and fatalities [2]. Bureau of 
Labor Statistics in 2020 published that 15% of fatal 
occupational injuries resulted from hazardous contact 
with equipment and objects [3]. Also, according to 
Occupational Safety and Health Administration (OSHA) 
figures, struck-by-equipment hazards accounted for 58 % 
of struck-by incidents from 1995 to 2008 [4]. Therefore, 
contact collisions between construction workers on foot 
and equipment pose a significant risk to the safety and 
health of construction workers. However, the capacity to 
spot these collision accidents in advance on a site is vital 
to any construction project since preventing 
unanticipated catastrophes is always the best way to 
avoid them. Therefore, an automated safety monitoring 
of struck-by hazards has emerged as a potential option 
for effective safety management on a construction site 
[5]. In this paper, the authors propose the use of audio 
sound to extract important and useful information 
regarding equipment activities performed in the site. This 
is possible as audio-based activity identification is very 
easy to collect regardless of dynamic occlusions and 
different tools have signature distinguishable sounds 
which make it suitable for task identification [6].  

2 Related Studies 
Some past work has focused on the usage of visual 

sensors for localizing and characterizing the behavior of 
resources and has been extensively applied in the 
construction industry and achieved promising results by 
various methods [7]. Several active technologies have 
also been developed to provide proximity sensing and 
alerts for workers and equipment operators, such as 
image wearable devices [8], tactile-based wearable 
devices [9], Bluetooth-low energy [7], and global 
positioning system [11]. Some studies have used GPS 
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data for long-distance detection of collision hazards. For 
example, an unsafe-proximity detection model focused 
on decreasing false alarms has been developed using a 
GPS-aided inertial navigation system sensor as the state 
tracking module [12]. Another GPS-related method for 
recording, identifying, and analyzing interactive 
hazardous near-miss situations between workers-on-foot 
and heavy construction equipment was presented using 
spatiotemporal data [13]. Shorter sensing devices like 
Bluetooth Low Energy (BLE)-based proximity sensing 
have been applied to address work-zone safety to allow 
understanding of dynamic spatial relationships among 
equipment, operator, workers, and a surrounding work 
environment [10]. Also, a spatiotemporal network-based 
model was developed at both entity and network levels 
to perform dynamic risk analysis on the struck-by-
equipment hazard [14]. Sakhakarmi et al, develop a 
proximity sensor using a wearable tactile-based system 
for workers to help improve their hazards perception [9]. 
These smart and automated systems are effective but 
prone to false alarms. Wang et al. [12] presented two 
novel four-dimensional models, a time-sphere model and 
a time-cuboid model that effectively reduces the rate of 
false alarms; still, the data not wirelessly communicated 
made it challenging to apply in real-life situations. There 
is also a growing application of artificial intelligence in 
safety management such as using computer vision 
technology in image detection to monitor a 
comprehensive view of the area surrounding equipment 
via cameras installed on every side of the equipment 
body. This allows displaying the surrounding 
environment on the operator’s monitor to protect the 
workers from potentially dangerous situations involving 
equipment operations [15]. Researchers also developed a 
digital twin using the Bayesian network that fed and 
updated real-time data from sensors that pro-actively 
forecast dangerous scenarios based on collision 
probability on affected workers-on-foot [16]. Most of 
these methods were implemented by installing sensors or 
electronic devices such as cameras directly on equipment 
or construction workers. Besides, those devices are 
relatively expensive; thus, they cannot be used on a wide 
scale in reality. Also, some base the alert detection on the 
information obtained from available hazard detection 
records, as more factors can cause dangers to workers 
that are not factored into the study. To address the gaps, 
there is a need to investigate the surveillance approach 
that is less expensive and adaptable to rigorous 
construction effect like during the excessive dust in 
visual equipment monitoring. Auditory surveillance 
using the sound collected from construction sites could 
address these issues. However, there is a lack of such a 
method of processing audio signals for equipment 
monitoring and safety against collision hazards in the 
construction field.  

A few efforts have been made in other sectors' 
research in auditory surveillance for collision hazard 
detection. A real-time framework was created to detect 
multi-vessel collisions using a spatial clustering process 
to detect clusters of encounter vessels within each cluster 
from the vast number of monitored vessels in a surveyed 
sea area [17]. The framework effectively and efficiently 
detects encounter vessels and ranks collision risk indexes 
within each cluster. Another method for detecting 
collision hazards amongst motorcycles via accelerometer 
measures was proposed using a machine learning model 
[18]. The system was designed using data from an 
instrumented vehicle and validated in simulation. 
Nonetheless, research on auditory surveillance focusing 
on detecting collision hazards in construction job sites 
has not gained much attention in the research community. 

Acoustic emissions from construction activities were 
used to calculate the working hour to allow field 
managers to know workers' work progress and 
productivity [19]. Success from this study shows how 
using auditory surveillance can prove positively in 
detecting equipment sound type. Another using 
surveillance technology in the construction industry 
helps support the construction industry’s safety 
performance since the lack of sufficient visibility is the 
principal factor leading to fatalities [20]. As stated earlier, 
most sound-based surveillance technologies were only 
focused on monitoring construction work activities and 
equipment operations. For instance, a hybrid system was 
proposed for recognizing multiple construction 
equipment activities [18]. A supervised machine 
learning-based sound identification algorithm was 
implemented to enhance monitoring and performance of 
construction site activity [21]. A few studies attempted to 
develop new approaches for conducting an audio-based 
event detection system for safety. Experimental trials 
were designed to deploy sensing technology to provide 
alerts to proximity detection when heavy construction 
equipment and workers are in close proximity [22]. 
Nonetheless, the devices were installed on construction 
equipment only, not equipped on construction workers. 
Another approach using a machine learning algorithm 
can categorize sound events and make construction 
workers aware of possible safety risks and hazards [23]. 
Still, the sound data relating to collision hazards were 
only collected from a particular worksite. Such an 
approach is restrained because the sounds emitted by the 
equipment from various construction sites may differ and 
contribute a different amount of noise. Studies have been 
done on determining the optimum position for 
construction noise barrier location, and a comparison was 
made during each stage of the construction process. All 
in all, there is a need to develop an audio-based 
localization of stationary and mobile equipment 
framework. In doing so, this paper particularly focuses 
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on extracting the local coordinate of the sound source and 
process this data to locate the position of construction 
equipment.  

3 Methodology 
This study introduces a framework for audio base activity 
detection to prevent the struck-by construction 
equipment hazards, which is illustrated in Figure. 1. This 
framework consists of three phases that include 
equipment sound extraction, data processing for DOA 
estimation, and worker's danger notification signal based 
on distance computed. First, the extraction of the sound 
record is done in real-time, which is possible with the 
microphone array mounted on the raspberry pi. The 
second phase has these audio data separated into different 
equipment sounds, containing each sound's identification 
with their local coordinate value uploaded into the 
database for data cleaning and processing. This is done 
by separating the mobile and stationary equipment with 
their unique sound identification and entering each sound 
type into a separate relational database where the DOA 
of the sound from the workers is estimated. Lastly, based 
on the DOA, the location and distance from workers are 
calculated as shown in equation 7 to notify the workers 
based on the danger zone specified. Each of these steps 
is described in further detail below. 

Figure 1: The overall framework for audio-based 
activity identification 

3.1 Sound Processing Pipeline 
We employ a ReSpeaker Mic Array v2.0 device with 

four high-performance digital microphones and twelve 
configurable RGB LED indications (see Figure 2) 
coupled to a Raspberry Pi 3 processor. This RP3 runs its 
own instance of the ODAS framework, which outputs 
direction of arrival (DOA) represented by a 3D unit 
vector in the array's local coordinate system, as shown in 
Figure 3. The DOA of the arrays lies on a virtual unit 
hemisphere with the z-axis facing up and lies on the 
positive side and is defined in equation 1 [24].  

(1) 

where , and .  

Figure 2: Experiment Setup 

To maximize DOA localization on the microphone 
array, MacBook Pro and Android smartphone speakers 
are utilized to play a bulldozer (mobile) sound and a 
hammer (stationary) sound, respectively. The loudness of 
the bulldozer and hammer sound using a decibel-meter is 
in the range of 75dB to 79dB. The ODAS sound source 
tracking module is designed to detect both static and 
moving sources. Although it is capable of tracking up to 
4 sources at this time, we only make use of two sound 
sources for this experiment. A single microphone array 
is installed in a controlled space (see Figure 4 for 
calibration locations). This array is positioned in the top-
left middle part of the room, while the mic array is 
oriented with the z-axis facing the ceiling and the x-axis 
facing the northeast direction. It should be noted that the 
processing is independent and unaffected by the array's 
positions and orientations. These relations are useful for 
interpreting the findings and are not employed to locate 
the sound source. Microphone arrays are usually 
omnidirectional, which make their orientation relevant 
[23], and the multi-channel raw audio is sampled at 
44,100 Hz from the ReSpeaker array, resampled by 
ODAS at 16,000 Hz, which then returns an updated DOA 
estimation [24] 

Figure 3: ReSepaker Microphone Array 

We also estimate the angle in degrees to determine 
the direction in a cartesian plane with the x and y local 
coordinate collected using equation 2.  
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(2) 

3.2 Experimental Set-up 

This section describes how we set up our 
experiment as well as the technique we used to 
determine the DOA of construction equipment 
sound. Firstly, a bulldozer sound device is placed 
sequentially at four different locations away from 
the microphone array, as shown in Figure 4; after 
every 30sec each, the microphone array is moved to 
these new points to record a 3-component DOA of 
approximately 130 records estimated every 1s. The 
device is moved from position 1 to a new position 
2, and this process is repeated for positions 3 and 4 
while keeping the hammer sound at a single 
position 4 for the entire duration of the experiment. 
The procedures are repeated five times, and the 
measurements were performed in nearly a 
horizontal plane. After the experiment's conclusion 
in a controlled environment free from noise and 
environmental factors, a DOA local coordinate 
record between the range of 15,100-15,200 for both 
the stationary and mobile sound was recorded. A 
timer on an iPhone device is synchronized with the 
time on RP3. When left running continuously, each 
calibration point is estimated to record 3700-4000 
for the 30s. The timestamp, id, energy, and local 
coordinate of DOA estimates are saved locally as a 
text file which is pushed to the cloud and loaded to 
a relational database for data cleaning and pre-
processing. The data is then sorted and joined based 
on the time stamp. The result is a chronological 
table that contains the DOAs from all arrays 
synchronized using the timestamps. This table can 
be queried to get the full information for any period 
of time. ODAS tracks the loudest sound source and 
records the DOAs with energy greater than zero as 
dynamic. Once the experiment can verify the 
direction of arrival of construction equipment, 
which was done in this study, the experiment will 
be further expanded to detect collision hazard using 
two microphone array set-ups on the construction 
site. The first mic-array is a fixed at a point, and the 
second mic-array is a mobile mounted on the 
construction workers. To pinpoint the location and 
distance of the equipment from the worker, we 
considered several scenarios to present the 
derivation of the distance to the worker. One of the 
case scenarios is when a bulldozer and hammer 
equipment sound are played simultaneously, the 
bulldozer changes location during the period of 
operation, if a construction worker is in the danger 
zone, the framework should be able to notify the 

workers of the current status and vice versa.  The 
performance will be tested both in a control 
environment and a construction site to examine the 
amount of false alarm generated from the 
notification which will help to determine wide 
range application on the construction site.  

Figure 4: Position 1 to 4 and the location of 
microphone array. 

4 Result and Discussion 
As mentioned in Section 3, two sound devices were 
used for five different scenarios considering 
equipment like bulldozer and hammer. Figure 5 
present the performance analysis result for all the 
scenarios, and its shows the bulldozer sounds being 
moved manually from calibration point one to four. 
The first position of the mobile device is at the 
positive x and y coordinate in Q1 with a value 
above the zero line. At position two, the coordinate 
enters the second quadrant Q2, with the x-axis 
changing to a negative value slightly below the zero 
point, as shown in Figure 4. At position three, even 
though there is a drop close to the zero line, it shows 
a positive y-axis and still slightly occupying the 
second quadrant's space. The fourth position shows 
a positive x-axis and a negative y-axis with values 
above zero and below zero, respectively. Lastly, the 
DOAs at experiment four at some point shows 
some roughness due to slight environmental 
disturbance and other issues. This is due to a 
substantial disturbance of the sound source at and 
near point three from the audio being played, 
confirmed by re-playing the audio sound along with 
that duration. A slightly straight line is observed for 
the stationary hammer sound as this maintained 
position four without any location changes. 
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(a)

(b) 

(c)

(d)

(e) 

(f) 

Figure 5: (a-e) Mobile sound DOAs measured 
from the five arrays and shown measurement 
from point 1 to 4 and (f) Stationary sound DOAs 
measured at a single location. 

4.1 Angle of Arrival of Sound 
This experiment shows we considered four planar 

wavefronts at direction-of-arrival of 1.47*, 106*, 163*, 
and 268* for points one, two, three, and four, 
respectively. The fourth point for mobile and the 
stationary device were coherent, as they were positioned 
at the same location in the experiment space.  

Figure 6: Mobile and stationary sound angle 
measurement in degree for the five arrays and 
shown measurement along the point 1 to 4 

4.2 Energy Timeseries 
The framework gives additional information 

about the loudness of the sound in a normalized form, 
with a scale from 0 to 1 for both the mobile and stationary 
sounds. Figure 7 shows the high stationary energy value, 
which is attributed to the uniqueness in the sound type, 
with is a loud intermittent sound that is not affected by 
sand or concrete noise. The end position of the 
experiment has a relatively lower energy value for the 
hammer sound; playing back the audio to confirm the 
information, we notice a decrease in sound while in 
operation. 
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Figure 7: Energy propagation for experiment 1 to 
5 

4.3 Local coordinate mapping 
In each of the DOA local coordinates for the x and 

y-axis, the projected shape, and the movement of
bulldozer sound along the point indicated are recognized,
allowing for determination of the movement with few
labels on the initial source location. The magnitude of the
vector’s entries shows a deeper presence at these four
calibration points as the device maintains some
30seconds—also, a path of the movement of the
equipment sound. Since the experiment has entries for
the five sets of measurements, their mapping is different
and color-coded, as shown in Figure 8.

4.4 Discussion 
The ODAS framework exploits the directivity of 

microphones to compute generalized cross-correlation 
phase transform (GCC-PHAT) between pairs of 
microphones [25] and compute time delay of arrival 
(TDOA) based on the microphones that are close to each 
other, which indirectly impacts the performance as an 
array with less microphone and evidently reduce the 
accuracy of detection [24]. Equipment sound like a 
hammer that has strong intermittent sound is easily 
picked up by the microphone and produces high energy 
value compared to continues prolong sound like a 
bulldozer which level of sound can be highly impacted 
by the materials it is working on and the condition of the 
machine. The fast, optimized processing strategies make 
it possible for this framework to perform all processing 
on low-cost hardware like Raspberry Pi 3, which is 
cheaper and more economical than the already available 
sound detection device. Lastly, due to the scope of this 
study, one particular limitation of this research is that the 
system does not account for noise filtering on the 
reSpeaker v2, and further work is needed to be done to 
eliminate background noise disrupting the sound capture. 

Fig 8: Equipment mapping of positions 1 to 4 showing 
the movement of equipment sound along the line. 

5 Conclusion 
This research focused on pro-active struck-by hazard 
detection in construction and introduced an approach to 
simulate a sound source localized from a series of local 
coordinate system arrays. Each computed array performs 
the DOA estimation independently and feeds its 
measurements to a data center where the DOA from all 
arrays are timestamped and preprocessed for data 
exploration and analysis. The method was demonstrated 
with a single circular microphone array in a controlled 
environment. The methods demonstrated here provide a 
step towards monitoring activities in construction sites 
with no training effort, as the device has an inbuilt 
algorithm to separate four sound sources. To make the 
device more stream-lined, we plan to design a flexible 
device to allow to be able to mount it on construction 
workers and will ultimately contribute to promoting a 
safer working environment for construction workers. 
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